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The motivation of this work can be summarized as follows:

@ AES system for Chinese L2 writing has received less attention;
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The motivation of this work can be summarized as follows:
@ AES system for Chinese L2 writing has received less attention;
@ Existing models are mainly built in a prompt-dependent way;

@ Neural models are weak in interpretability of the results.
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Contribution

The contribution of this work is as follows:

@ Presenting a model for both narrative and argumentative essays;
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Contribution

The contribution of this work is as follows:
@ Presenting a model for both narrative and argumentative essays;

@ Integrating various dimensions of features emphasized in Chinese L2
acquisition, thus interpretable;

@ The source code of our method is publicly available:)
https://github.com/iris2hu/L2C-rater.
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Linguistic Complexity Features

We constructs a comprehensive set of linguistic complexity measures of
Chinese L2 writing.

Chinese characters and vocabulary
Sentences and clauses
Collocations and bigrams
Dependency structures

Constructions

Writing error features
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Chinese characters and vocabulary

We build four indices in this dimension:
@ Number of Chinese characters Y F# 2
@ Number of Chinese words jaiC £ &
o Lexical diversity iaiC Z#EM4
o Lexical sophistication jF)iC S 2 E

The lexical diversity index is computed as the root type token ratio
(RTTR) of words. J
The lexical sophistication is built as the ratio of sophisticated words. J

Words of HSK-5 level, HSK-6 level and out of the HSK vocabulary are
regarded as sophisticated. J
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Sentences and clauses

Seven indices are proposed to measure the sentence and clausal
complexity (the first five):

The mean length of sentences Y3k A4

The mean length of clauses S 14/\FJ4&

The mean length of T-units 3y T B{ii<
Number of clauses per sentence Y 35/NA)%]
Number of T-units per sentence S35 T EA{i %]

T-units(T E24r)

A single clause that contains one independent predicate plus whatever
other subordinate clauses or non-clauses are attached to, or embedded
within, that one main clauses.
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Sentences and clauses

The next two:

@ The mean depth of the dependency trees ¥ A)EFHRE
@ The max depth of the the dependency trees Fx K A)iERT IR E

HED. / oves \\
/ g \B\\ / YR / - //// ATT\\\\\\ N\
/ - / AN - N \
A/ ~ v N\
J/ ‘ W/DBL \W/RAD \ /’/ RAD, '/ ATT \\\\\* \'
Root  ZJT %Py &k HE T S G ¥ ik .
n v r v u b u v n wp

1: An example of dependency tree
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Collocations and bigrams

First, eight types of collocations are considered. Four of which are
universal collocation types existing in different languages, while the other

four are language-specific types.
The universal four are as follows:

@ Verb-Object(VO) ZhE «+ EXFP; "BEH

@ Subject-Predicate(SP) £i8 « FdhmAT; MIEHKE KT
o Adjective-Noun(AN) & « F 4 K¥; Tl 43

o Adverb-Predicate(AP) JkH « KRR KL, ARHIET

CCL 2021
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Collocations and bigrams

The language-specific four are as follows:
o Classifier-Noun(CN) &8 : £ 7; K4
@ Preposition-Postposition(PP) #EX /A : & X E; & X L&
e Preposition-Verb(PV) 413 : #& X #k; # X %7
o Predicate-Complement(PC) i&%p : "2 4 ; InfF Mtk
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Collocations and bigrams

Besides, to measure the collocation sophistication, we introduce:
@ Diversity of all the collocations EE{{EHE 2+ 14

@ Diversity of Chinese unique collocations 45k {28l B+ 1%E
Diversity of language-independent collocations —fgF&HE Z 14

°
o Ratio of Chinese unique collocations 435k$&HL bt 1
e Ratio of sophisticated collocations ! {351 (£ 2%) &L LL i

VBT ESMBEREE N
‘AL
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Collocations and bigrams

Besides, to measure the collocation sophistication, we introduce:
@ Diversity of all the collocations EE{{EHE 2+ 14
@ Diversity of Chinese unique collocations 45k {28l B+ 1%E
o Diversity of language-independent collocations —fZF& e Z 14
o Ratio of Chinese unique collocations 435k$&HL bt 1
e Ratio of sophisticated collocations ! {351 (£ 2%) &L LL i

To cover more language usages, we implement the following two as well by
considering the bigrams as a specific type of collocations.

e Bigram diversity —LH S M
@ Bigram sophistication? {371 (§2%) — AL I

VBT ESMBEREE N
‘AL
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Dependency structures

Drawbacks of collocations and bigrams features

@ They only target at part of the syntactic relations, lacking a whole
picture of the syntactic structures;

@ They are NOT able to measure the fine-grained phrasal complexity
underlying the structures(e.g. num and len of mod-s).

To address the above two problems, we proposes 41 dependency based
indices that measure the diversity, ratio and mean distance (for num
and len of mod-s), of all the dependency triples.
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Dependency structures

Examples of dependency triples
o FiBXH: (SBV, W, # )
o FHEXF: (VOB, 48, 7 %)
o EHXHA: (ATT, B, 77 )

wp
ed /// _voB T
/A\ 7 T N
/ N\ / !DE _ // A L\

/ N TN N \

! / \W/DBL\ \ // RAD \ \ v/’/ RAD \ '/ Al T\;\‘\\' '

Root EAL 11U/ 1 i H‘ T L4 ft) %2 Jiik .
v r v u b u v n wp

n

[& 2: An example of dependency tree

For more detail of dependency triples, you could check
https://1ltp.ai/docs/appendix.html#id5
CCL 2021
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Constructions

@ We measure the density and ratio of constructions with regarding to
their levels3.

@ 15 indices are built to reflect the density and ratio of different levels
of constructions after automatic recognition.

Example:
X BR —ZE M8 — 1 MESE AR ME &£, 2% 15
B B R RIFIRE.

° 24 HHEI EERLZ,

o 3 4% BEMEFNIA MiAMEIE _ WK, &EZhA),
o 4 425 EFEIEIE;

o 5 4% MhmAME;

‘EMTRGANASINIEEASE (EFUERFEMREAM (2000 BR) iy "% BEEE
MBSRE" . ZFE 62 MEREENERSEMES HER
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Writing Error Features

=

adopt five indices of writting errors:
Punctuation errors 5B BRI E
Chinese character errors ;Y FiEiRE 2
Word level errors jaliC$EiR %12
Sentence level errors AR RIS

Discourse level errors =R E

be counting them with reference to the annotation in HSK Dynamic
Composition Corpus.
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Multi-granularity Text Features

It's still beneficial to retain the full picture of the textual features. We
extract character, word and part-of-speech unigrams, bigrams and
trigrams as features. We use the tf-idf weighted representations of these
features, and each essay can be represented as a text vector:

TextVec = (tfidf,, tfidfy, . . ., tfidfy) (1)

CCL 2021 18 /38
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The Ordinal Logistic Regression Model

We proposes to use the Ordinal Logistic Regression (OLR) model in
Chinese L2 AES since the it’s effective for ordinal categories.

A practical loss of ordinal classification is threshold-based, which is
divided into Immediate-threshold loss and All-threshold loss. We use
All-threshold loss, which is represented as

= . . 1 k<i
Lossar(z) = Y (s(k;i) (6 — 2))  s(k; i) _{ k> (2)

k=1

where z is a specific predicted value, (0;_1,0;) refers to the correct
segment, and f(-) could be any kind of loss function for multiclass
classification.
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The Ordinal Logistic Regression Model

Bringing h(z) := log(1 + exp(z)) into Lossar(-) as f(-) gives the
minimization objective for All-threshold Ordinal Logistic Regression:

N |yi—1 -1
LossoLr.AT = Z Z h <0k - X,-TW) + Z h (X,-TW — 9k> 4 %WTW
k=1

i=1 = k=y;

(3)
where label k € {1,...,/} corresponds to the segment (6x_1,60%). 6y and
) denotes —oo and +oo respectively. {x1,...,Xp},X; € RY” are training
examples while {y1,...,yn},yi € {1,...,1} are their labels.
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The Ordinal Logistic Regression Model

Bringing h(z) := log(1 + exp(z)) into Lossar(-) as f(-) gives the
minimization objective for All-threshold Ordinal Logistic Regression:

N |yi—1 -1
LossoLr.AT = Z Z h <9k - x,-Tw) + Z h (X,-TW — 9k> 4 %WTW
k=1

i=1 = k=y;

(3)
where label k € {1,...,/} corresponds to the segment (6x_1,60%). 6y and
) denotes —oo and +oo respectively. {x1,...,Xp},X; € RY” are training
examples while {y1,...,yn},yi € {1,...,1} are their labels.

The regularized logistic regression minimization objective:

N
A
LossrLr = Z log <1 + exp (—y,- . X,-TW>> + EWTW (4)
i=1
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Dataset and Preprocessing

@ Using essay data from HSK Dynamic Composition Corpus;

@ The essays are rated from 40p to 95p with an interval of five,
yielding 12 different categories;

e 10277 argumentative and narrative essays are involved;
o 5-fold cross validation with Train-7040/Dev-1760/Test-1477.
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Feature Selection

We conduct step-wise linear regression in each dimension of linguistic
complexity and writing error indices to examine their predictive power.

Dimension R R?

Chinese characters and vocabulary (4, 3) | 0.648 | 0.420
Sentences and clauses (7, 4) 0.197 | 0.039
Collocations and bigrams (23, 8) 0.587 | 0.345
Dependency structures (41, 16) 0.610 | 0.372
Constructions (15, 9) 0.248 | 0.061
Writing Error Features (5, 4) 0.254 | 0.065

3 1: Step-wise regression results in each dim. The numbers in brackets denote
the number of indices entered and remained in the step-wise regression.

For the 90 linguistic complexity indices, 33 were selected by step-wise
regression, and it yields 31 after integrating the writing error features. J
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We build two types of baselines including regression-based and

tree-based ML models that share the same feature space with OLR
model:

@ Linear Regression
o Logistic Regression
@ Random Forest Regression
@ XGBoost Regression

as well as two other effective neural models:
@ CNN+LSTM by Taghipour and Ng(2016)
@ Att-BLSTM by Zhou et al.(2016)

Wang & Hu (BJTU & BNU) 2021.ccl-1.107
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Evaluation Metrics

There are many metrics that can measure the consistency between AES
systems and human experts. In this study we employ three of them:

o Quadratic Weighted Kappa(QWK) & i «
@ Root Mean Square Error(RMSE) 3 51RiRZE
@ Pearson coefficient(Pears.) F/REMERZREL
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Method Mode | QWK | RMSE | Pears. Mode QWK | RMSE | Pears.
L 0.640 1.636 0.679 L+T 0.269 3.576 0.299

LiR [FE | 0.668 | 1.585 | 0.702 | L+E+T | 0276 | 3557 | 0.307
= [ [ 0508 | 1813 | 0620 | LT | 0.641 | 1720 | 0.663
[FE [ 0640 | 1.715 | 0.661 | LLELT | 0.663 | 1.667 | 0.681

- [ [ 0625 | 1.657 | 0668 | LT | 0.652 | 1.603 | 0604
[+E [ 0655 | 1.601 | 0.695 | L1ELT | 0.667 | 1575 | 0.706

CBR L [ 0576 | 1.600 | 0652 | LT | 0587 | 1.676 | 0.659

L+E 0.613 1.625 0.687 | L+E+T | 0.621 1.616 0.690
CNN+LSTM | Rand | 0.496 1.845 0.551 Sogou 0.504 1.831 0.560
Att-BLSTM Rand | 0.520 1.825 0.568 Sogou 0.531 1.812 0.578

OLR-AT L 0.644 1.650 0.674 L+T 0.697 | 1.554 | 0.718
L+E 0.666 1.616 0.691 | L+E+T | 0.714 | 1.516 | 0.734

3R 2: Results of Chinese L2 AES. The bold denotes the best result under the
same feature setting.
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@ All models obtain the best results under L+E+T except for LiR,;
@ LiR achieves almost the best results under L and L+E;

@ The effect of the neural AES model is temporarily weaker than
methods based on feature engineering;

o After adding text features to L+E, the performance of OLR-AT

improves by 7.2%, compared with 3.6% of LoR, 1.8% of RFR and
1.3% of XGBR.

Wang & Hu (BJTU & BNU) 2021.ccl-1.107 CCL 2021 27/38



Table of Contents

@ Discussion
@ Analysis on Confusion Matrix
@ Revisiting Linear Regression

Wang & Hu (BJTU & BNU) 2021.ccl-1.107 CCL 2021 28/38



Analysis on Confusion Matrix

To illustrate the models’ behaviors, Figure 3 shows the confusion matrix
of the OLR-AT model under L+E+T.

Labels

i s 6 7
Predictions

[& 3: Confusion Matrix of OLR-AT Results
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om Confusion Matrix

<& For essays whose predicted scores too high:
@ The contents deviate from their prompts;

e Lacking of organization when expressing opinions (for
argumentative essays).

<& For essays whose predicted scores too low:

@ Rating exceptions by the human raters, e.g. giving high scores to
unfinished essays.

Wang & Hu (BJTU & BNU) 2021.ccl-1.107 CCL 2021
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Revisiting Linear Regression

Mode QWK | RMSE | Pears.
T 0.207 | 3.787 | 0.232
L+T 0.269 | 3.576 | 0.299
L+E+T | 0.276 | 3.557 | 0.307

%k 3: The results of Linear Regression with different feature sets.

Method | Mode | QWK | RMSE | Pears. Mode QWK | RMSE | Pears.
LiR L 0.640 | 1.636 | 0.679 L+T 0.269 | 3.576 | 0.299
L+E | 0668 | 1.585 | 0.702 | L+E+T | 0.276 | 3.557 | 0.307
L 0.636 | 1.640 | 0.676 L+T 0.694 | 1.538 | 0.723
L+E | 0.667 | 1.585 | 0.702 | L+E+T | 0.709 | 1.510 | 0.735

Ridge

3 4: The comparison of Linear Regression and Ridge Regression
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Effect Plot

Chinese Characters & Vocabulary Sentences & Clauses

[

]
L

B e S

CHAR_NUM LEXICAL RTTR LEXICAL SOP2 ML MAX_TREE_DEPTH

(a) CHN Char & Vocab (b) Sentences & Clauses

4: Effect plot* - Part 1

*The green triangle for a essay of 95p; The blue circle for a essay of 65p; The red

cross for a essay of 45p.
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Effect Plot

Collocations & Bigrams 20 Dependency structures
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(a) Collocations&bigrams (b) Dependency structures

[&] 5: Effect plot® - Part 2

5The green triangle for a essay of 95p; The blue circle for a essay of 65p; The red
cross for a essay of 45p.
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Effect Plot

Constructions Writing Error Features

—— ‘

'
{ 20

.
o
" ) o o
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CONST_DENSITY ~ CONSTLRATIO  CONSTLDENSITY o o o
o o

(a) Constructions (b) Writing Error Features

6: Effect plot® - Part 3

5The green triangle for a essay of 95p; The blue circle for a essay of 65p; The red
cross for a essay of 45p.
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Conclusion and Future Work

Linguistic
Complexity
Features

1 1
Scaling Feature
_)(Optional)"{ Selection
L J

( )
) Feature Space
Essay Data }—V Building —>

L J

‘Writing
Error
Features

l

Human

Rater
Scores

Feature

Text
Presentation
Features

Fusion

[ l f 1
OLR-AT Prediction—>_, 100!
L J ]Evaluatlol}

7: Pipeline of the model
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Conclusion and Future Work

Summary:
o Explainable representations of both linguistic and text features are

built;
@ The most effective combination: OLR-AT / L+E+T;
@ Potential to offer users writing feedback.
Next step:

@ Modeling more dimension of essay quality such like fluency ,
coherence, prompt-adherence and so on;

@ Trying to make automatic feedback more accurate and helpful;

@ Further exploiting the potential of neural models on AES tasks.
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